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Chaos near the gap soliton in a Kerr grating
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Differences are investigated between solutions of the one-dimensional Helmholtz equation for monochro-
matic waves in a Kerr grating and its approximation, ¢generalizeylcoupled mod€¢GCM) equations. First
it is pointed out that use of the latter can be justified on the basis of averaging theory, and an upper bound is
given for the error made this way. Second, the qualitative difference that arises because of the nonautonomous
nature of the Helmholtz equation is investigated. The latter property causes that part of the trajectories to be
chaotic, in contrast with the periodicity of the solutions of ta@tonomous GCM equations. In particular,
standing waves near the gap soliton wigmvelopg wavelength of the order of the inverse squared of the index
contrast show irregular features. This is concluded from the observed scaling behavior of the dimensions of the
chaotic region in the phase plane.
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I. INTRODUCTION are in general doubly periodic, with equilibria and the solu-
M h . ith f band . tions of infinite period, the gap solitons, as extremal céises
onochromatic waves with frequency near a band gap Mact, they are known explicitly, cf. Ref2]). This qualitative

a one-dimensional Kerr grating with periati are usually gitterence is investigated for standing waves, in particular
described by writing the electric field as a sum of WO ¢0r those near the gap soliton

counter-propagating traveling waves with slowly varying  raq6 jssues are discussed in the following way. Starting
amplitudesA,(2) andA(2), say. Approximate equations for ., the Helmholtz equation an equivalent system of two
thgsg amplltudgs are heunstlcally found on the basis o&the coupled first order equations for the mode amplitudleand
priori assumption that the anjpllt_udeg, depend slowlyzon A ot harmonic modes expike?), kg=m/d is formulated.
a_lfter subst|.tut|on of the eIegtnc field into Maxwell's equa- rpjq provides an exact description of the waves, within the
tions. In this way one obtains the so-called coupled mOd?ange of validity of the Helmholtz equation. The averaged

equations, cf. Refs1,2] and references therein. In @ more o qion of these equations yields the GCM equations and

;ophisticateq and precise procedure one writes t.he field 8Sifus error estimates can be obtained in terms of the relevant
linear combination of, e.g., Bloch modes, and first sets URmall parameters

exact equ_ations fqr t.he amp"t‘.id@?""‘]- Subsequently one Next, standing waves in a multilayer are considered in
dfnr\]/es W'thqua pr_lrc;]r'l alssudmptlcf)nslan gpproxmate virsalon more detail. Via phase plane analysis solutions of the exact
of the equations. This leads, cf. also RE], to so-called o ,ations for the multilayer are compared with those of the

generalized coupled mod&CM) equations. The latter equa- corresponding GCM equations. As expected, the former

tions have all the same form b differ in the precise qef'r.]"show chaotic behavior. In particular one observes a region

With chaotic trajectories around the gap soliton, as the theory

of the difference between solutions of the exact equationg nonintegrable systems predicts. Numerically a scaling re-

and of their approximate version is the subject of this papelg, s tor the dimension of this region is found in terms of the

As a first topic it is demonstrated that the GCM equation§jineay index contrast of the multilayer. Comparison with the

are obtained from the exact equations by an averaging pro;, dina GCM bh trait sh that thi .
cedure[6,7]. This procedure yields an overall upper bound orresponding pnase portralt Shows that this region

for the diff ' Cth | d contains waves witlienvelopg wavelength longer than the
.ort € difierence in terms of t esmgb pqrameters_ elUN- inverse squared of the index contrast. Furthermore, the
ing, linear index contrast, and nonlinearity.

o . . present calculations demonstrate that the GCM model gives
Second the qualitative difference between solutions of ex

! . L ) a very poor description for index contrast larger than the
act and approximate equations is investigated for a Spec'f'&der of 101

case: standing waves in a multilayer. A crucial qualitative
difference is expected for the following reason: the exact
equations depend periodically an Consequently, part of
their solutions show irregular, “chaotic” behavif8,9]. In
contrast, the GCM equations, being the averaged version of A. Coupled mode equations and averaging

the exact equations, do not depend explicitly onTheir Consider monochromatic waves in a one-dimensional sys-
Hamiltonian stucture makes them integrable and solutiongsy with third order nonlinearity. The electric field is or-

II. EQUATIONS

thogonal to the direction of propagatianand given by
R E(2)expliwt)]. The nonlinear index of refraction depends
*Email address: t.p.valkering@utwente.nl periodically onz with period d and reads, with{=z/d,
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n(&)=ne(d)+ny(|EJ?. Then Helmholtz equation reads applying the averaging methd@,7], one concludes thadhe
~ o difference between the solutions of the full and the averaged
d’E/d¢? = - dAG(O[1 + (&)|EIIE, (1)  equations for initial condition that differ in first order in the

small parameters, remains of first order on a distance scale
of order of their inverseln Appendix A 1 a more precise
formulation of how to obtain this result is given.

2n,(2) g2 E E In applications, the parameter functions in [Ef). depend

, E=
no(¢) °

= EO- ) on a fewer number of small parameters, for instance the de-
tuning (w—wg)/ wg, the linear index contrast introduced

In shallow gratings band gaps occur at frequencies and waw@rough

numbers near multiples of the Bragg wave number and fre-

quency kg=7/d, wg=ckg/ny, Ny denoting the average of no(&) =ngl1 +& s(2)], (8)

no(¢). To formulate a set of first order equations that is ap- ] o

propriate to describe solutions with frequencies near and ig"d the nonlinearity. via ny(£) = m(¢). Heres({) andm(¢)

the first band gap, the electric field is written as a linear@re arbitrary but fixed functions, determined by the gratings

combination of solutions expi¢) of the homogeneous lin- ONe wants to consider. K({) has zero average one readily

where the different symbols are given b, is some real
reference fielg

Ko(d) = %no(@, A =

ear part of Eq(1), evaluates that the averaged values satisfy
~ 1 . . E: 5( _ )/
EQ)=——=I[e™AQ+e"A Q] @~ os)los,
V2dko(¢)
i.e., as a sum of modulated traveling waves, withand A_ P i_(iln n (§)>ezmg +0(?)
as amplitudes. The standard way of deriving the CM equa- 2\d¢ 0 a ’
tions is to assume that these amplitudes depend slowly on
and neglecting small terms. Here we use a different route, £2
sim_ilar to the one in Refs[.3,4], leading t_o GCM. Relation ﬁnzﬂ—_o[m(g)ein%(]av +0(eu). (9
(3) is supplemented with a second relation, 2ng
dE dko(d) _ Thus the averages are of first orderdne, andu. The same
=i T[— &AL +€™A(D)], (4)  holds for the functions themselves. Consequently in the av-

dZ eraged equations one may retain only the terms that are lin-
and we consider Eqg3) and (4) as a transformation from earind, €, andu.

variables[~E(§),d~E/d§] to [A,,A_]. This results in a set of
first order equations foA, and A_ that is equivalent to Eq. B. Equations for a multilayer
(1). Somewhat lengthy but straightforward calculations show

that this set has the form Here we consider a multilayer where each unit consists of

two layers,a and b with indices of refraction denoted by

dA/dl=—=iF(A,, A ;e,6,1), Noap @Nd N, 4y, respectively. Then the parameter functions
8(0), un(0) in Eq. (7) ands({) in Eqg. (8) are step functions,
dA/d=iF(ALA, €, 8,1") (5) and £({) equals the sum of twd@ functions located at the

transition points between the layers. These properties cause
that averaging theory as it is formulated usually cannot be

F= 80A + (DA + o Of AP + 2A BA, + i (Of2/A 2 applied immediately. |
Maintaining the aim of the present papErin Eq. (6) was

with F given by

+APA+ g (DAZAT+ up(HDACA, . (6)  simplified by takingu;=u,=0. Having in mind thate(¢)
F depends periodically og through the/-dependent “pa- =0 Within each homogeneous layer, one sees that coupling
rameter functionss(¢), 8(¢), and un(2), betweerA, andA_ is then realized by the nonlinear self- and
" cross-phase modulation within each layer, and by the linear
B _ing(d) i coupling at the transition between the layers. This simplifi-
A =dk(Q)—m Q)= 2no(2) e, cation allows us to give an explicit expression for the trans-

fer map for the full system. In Appendix A 2 it is shown that
WO n the averaged system as defined above is the proper one for
wn(Q) = =€, (7)  this transfer map.
4

h i | . The full equations are periodic i) and a standard way to
The generalized coupled mode equations are E&g@and i, estigate their solutions is via the transfer nBipver one

(6) with the parameter function&) replaced by their aver- it For the present problem this map can be given explic-
aged values. One way to justify this replacement is to assumiﬂy_ Let A denote the column vectpA, ,A_]™. Then essential
that the averaged values ¢, u, are small and that the co- features of the trajectories are represented by the discrete
efficients satisfy the order relation¥?)=0(d), etc. Then, sequence, generated By
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FIG. 1. Definition of grating geometry.

An = T(An—l)a {An = A(go + n)}1 (10)
where(, is an arbitrarily chosen initial position. Lég be at ;»R‘eA
the beginning of a layea.. Then7 is given by the composed -
transformation(cf. Fig. 1) FIG. 2. Level sets of the Hamiltonian at mid gap frequercy
=0, u=1, e=0.1. Thick: the gap soliton.
7= Bpa© q)bo Babe q)a- (11
Hered,, is the flow through the layemsandb, respectively, — M )
: : o — |02 m(2¢patald)
and the matrice®,;,, represent the transition between the &= Innbe' b sin(mra/d). 17

two materials, froma to b (b to a). Here note thahy(¢) is _

discontinuous at a boundary between two layers, so that thielearlys is complex, but always can be chosen to be real by
transformation Eq.(3) and (4) is discontinuous as well. Proper choice of the origin of th¢ axis. Because of the
Therefore the variables are discontinuous at the transition underlying Hamiltonian structure, the equation has a con-
point, and there is a linear relation between the values at eadfant of the motion, the Hamiltonia, which is given by
side of the boundary. One write’§,=B,,A, at the boundary (¢ is chosen to be real and stands foru, which is rea)

from a to b. This transformation is found from the continuity . —

of E anddE/d¢. With Egs.(3) and(4) one finds straightfor- H = 8(A 2+ |AD) +e(AIA, + ALA)) + §[|A+|4+ |A_|*

wardly

B,  Be?mha +4A A7 (18
Bab= B_e 2 mab Bs ' (12) Trajectories are most easily represented in terms of the level
ith sets of this Hamiltonian.
wit
1 i Nob lll. STANDING WAVES NEAR THE GAP SOLITON IN
Be=3ptp™), p= Mo (13 THE MULTILAYER
a

and ¢, denoting the position of the boundary. In this seption the trajectories of standing wave solutions
In the nonlinear material, an explicit expression for the®f Ed- (3) With u1(¢)=1,(£)=0 are compared with those of
flow @, follows from Egs.(5) and (6) with £({)=0 and its averaged counterpart at0, i.e., » is at the Bragg fre-
w1(0) = ux(2)=0. With the definitions guencyc ny lkB. Standing waves can be chosen to have real
E(2). ConsequenthA,=A"=A=|Alexp(i¢,), say, and trajec-
Kap(AnA) = Sap+ pmoapllA?+2/Az, (14 tories are drawn in the compleX plane. The electric field

&, can be written in the form of a matrix, depending non-then can be written as, cf. E(B),

linearly on its argument, 2
[eiraAai@ 0 A, E(2) = mb“\(zld)lmi{wz/OI+ ¢a(Zd)]. (19
Pa(A) = 0 granai@a ([ o [ (19
and similar for®,, A. Periodic solutions of the averaged equations

Trajectories of the averaged system are most easily repre-

To obtain the averaged equations observe #igl con-  gented as level curveig. 2) of the averaged Hamiltonian
tains two 6 functions at the material boundariég, and ¢y, (18) which with A=(x+iy)/2 reads

Thuse consists of contributions of two terms. Evaluating the
first contribution yields after partial integration 1— 1 3_

Y P ’ H =208 +y) + Sel¢—y) + =l +y)%.  (20)
Labt™ i n 2 2 16
Iimj e()d¢ = Eez'ﬂab In—2 (16)

N N R The (two) trajectories through the origin, so-called ho-
ab™

moclinic loops, represent a localized excitation, the gap soli-
and similar for the second. Then, wilfy,=¢,,+a/d one  ton. The smooth closed curves both inside and outside the
finds homoclinic loops represent periodic trajectorid&) with
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period depending on the value &f, with a singularity at appear, however, completely for the larger values.of
H=0. For the gap soliton the maximum value of the electric
field occurs where level sets intersect the imaginary axis, i.e., Here we focus on the dense collection of dots in the

whereH(0,y)=0. One finds with Eqs(20) and(3) neighborhood of the unstable manifold. These dots determine
a region whose dimensions grow with increasingVe will
mAmaxsol|2:28_u W2|Emaxso||2:éﬁo; (21) call this regionC. In each graph in Fig. 3, this region is
3 generated by one initial condition only, nearby the origin.

y starting point withinC fills this region.

To investigate the way in which the dimensions(ofle-
Epend one, both D and the diameteR of the largest circle
around the origin that fits withi@ were determined as func-
tions of e, cf. Figs. 4 and 5. A fit yields the following scaling

H(0,Ymad =HO,Ymin) =H if H<O, relations:

The amplitude of the periodic solutions varies between’o‘n
values|/Aninl and|An.,l, determined by the intersection of the
closed curves with the imaginary axis, for inside and outsid
trajectories given by

D=c, & and R=c,e %" (24)

. . with constants approximately =5, c,=232,c3=1. One ob-
In either caseyma, approaches the value in EQR1) when  genes thaD? is approximately linear ins, which agrees

H— 0 andxp, andyp, tend to zero. with the relationship(21) that follows from the averaged
For trajectories near the gap soliton, the Wavelgngth CaBquationsR becomes small with expcs/e).

be expressed apprOX|mater~|n terms of these maximum and The values of the constantsdepend on the specific sys-

minimum values as follows. IP(H) denotes the distance that tem one is considering, but the functional dependenceisf

is covered by a trajectory in the first quadrant, then the waveexpected to be universal for the type of problem considered

length of the inner and outer trajectory is given By=2P  here. It seems remarkable titgtapproximately equals unity.

andP, = 4P, respectively. In Appendix B it is shown that However, in terms of scaling this cannot be relevant, since a
out P 4 PP change of the definition of changes the value of this con-

= |Amasd stant. This exponential behavior is not unexpected. For a
eP= I”m +terms bounded wheH — 0. (23)  hertyrhed Hamiltonian oscillator the perturbation leads to ex-
mn ponential splitting of the homoclinic trajectof§L0], which
Clearly the first term diverges whéh— 0, so it is the domi-  splitting determines the dimensions of the stochastic |&yer
nant one. This term is easily understood as follows: Near th@elated to this the dynamics near the separatrix and the
origin a trajectory is approximately a linear combination ofwidth of the layer can be approximately described by the

the two eigenmodes ekpi\e?- &%) of the linearized sys- So-called whisker map, cf. Refl8] (for an example yielding

tem. Consequently wheA=0, the amplitude grows ag\ exponential width, cf. Ref11]).

~ |Aminlexp(e). Now observe that for smalh,;,| and small

e the trajectory remains extremely long in the neighborhood C. Interpretation
of the origin, so that the period is dominated by the linear
growth from|Ain to |Anad. The actual proof of Eq23) is
based on this argumentf. Appendix B. Note that this ex-
pression makes sense onlylAi,| <|Anad and smalle.

H(0,YmaY =HXmin,0)=H if H>0. (22

The phase portraits in Fig. 3 are typical for a two-
dimensional(2D) dynamical system that can be seen as a
perturbed integrable system, as the present one. For a proper
interpretation one needs the concepts and theories that de-
scribe the changes with respect to the averaged integrable
B. Irregular solutions of the full equations model: KAM theory (the survival or disappearance of peri-

With the transfer magl1), a series of phase portraits, cf. qdic orpits whosg period _is irrational with respgct to the lat-
Fig. 3, was calculated for different values of the index con-tic® periodd), Poincare-Birkhoff theorythe survival of ra-
trast defined as=(ng,—Ngy)/ (Nga+ Ngy). The phase portraits _t|onal perl0d|c orplt}; and Chaos theory'ghe appeararjce'of

. . . .~ irregular trajectories, cf. Ref§3,9,13. Typical trajectories in
Ehow, apart from a Sca'”_‘g factor,_ discrete trajector!eﬁ_\of a chaotic region show sensitivity of initial conditions, i.e.,
=exp-im{)A, the right going constituent of the electric field v, yaiectories that start nearby each other grow exponen-
in Eq. (3). Note thatA,=(-)"A,. They are obtained using the tially apart with distance. Furthermore, the Fourier spectrum
transfer map using the code accompanying R&P]. For  of a trajectory is broadened compared to &feinction spec-
comparison of averaged results with the exact ones note thaum of the periodic orbits in the unperturbed averaged sys-
e=In(n,/n,)=2e+0(&?). tem.

One directly sees that for the smaller values tifie phase Comparing the phase portraits in Fig. 3 with those of the
portrait is similar to that of the averaged model, apart from aaveraged system, Fig. 2, one infers that a set of periodic
rotation due to the choice @f in Eq.(10). With increasings  trajectories around the gap soliton and with a certain range of
one sees a growing dark region around the homoclinic loofrequencies have lost their periodicity. To quantify this state-
that exists fore=0. The equilibria inside thg¢formen ho-  ment, observe that the phase portraits in Fig. 3 suggest that
moclinic loops remain, with closed curves around them. Outthere is a largest inner closed curve and a smallest outer
side the loops one observes closed curves as well, they disurve roughly at the boundary of Using the approximate
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-1

-2 =1 L]

— > Re4

FIG. 3. Discrete phase portraits of the transfer map for increasing linear index canti@gt,—ngp)/ (Nga+Ngy) (top to bottom. They
demonstrate the growth of the chaotic region near the homoclinic (tdup gap solitoly ny=2, ny,,=0, and the reference fieIEE%
= 2(3n2bnb)"1.
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sharp contrast to the phase behavior of the field in the aver-
aged model. This behavior depends sensitively on the initial
condition. That means that two trajectories that are very
close at{={¢, typically will finally have completely different
sequencegN;,N,, N, ...}

IV. DISCUSSION

| -2 | 12

> Rod Summarizing, it was pointed out that solutions of the gen-
eralized coupled mode equations and the corresponding so-
FIG. 4. Definitions ofD andR. lutions of the Helmholtz equation grow apart at no more than

the order of the small parametdi., detuning, linear index
expression for the perio®3), one infers from the scaling contraste, and nonlinearity on a distance proportional to
results(24) that the period of the outer surviving curve is their inverse. In particular, restricting this result to the linear
determined by index contrast, it says that trajectories in full and averaged

model, respectively, that areclose at/=0, remaine close

Poui~ & L In(DYR?) =& YIn o5+ Ine + 2c56 3. (25) at distanceO(s "1). Complementary to this, for the present

multilayer and withw equal to the Bragg frequency, we ob-
serve that a qualitative difference appears for trajectories

inner orbit, one obtains a similar expression. We concludé(v't.h Wavel_ength larger than the o.rder.sflz, near the gap
that the periodic orbits in the averaged model with periodfsomon' This difference appears primarily in |rreg.ular behav-
larger than the order of magnitude f2 haved turned into 1°F Of the phase of the envelope of the electric field.
irregular trajectories. _The area in the_ phase portrait fllled by these irregular
The irregularity of a typical trajectory appears as follows: (rajectories, —diminishes exponentially as a power of
In the averaged model, the trajectories inside a homoclini€P(—& ). So it becomes extremely small for fiber gratings,
loop circle around one of the equilibria. Correspondingly thewith index contrast of the order of 19 10°“. In contrast, for
phase ofA oscillates aroundr/2 (—m/2). The trajectories values ofe of order 1, the phase portraits of the Helmholtz
outside the loops circle alternatingly around the two equilib-equation and GCM disagree completely, as Fig. 3 shows.
ria, i.e., the phase jumps with each period of the amplitude Note, however, that results are obtained for varying the index
|Al. In either case a trajectory forms a sequence of localizedontrast with frequency fixed at the Bragg value. Comple-
excitations at a regular distance. In contrast a typical trajecmentary, the scaling behavior should be investigated fixing
tory in regionC will swap at irregular intervals between the the index contrast and varying the frequency, in which case
two regions. More specifically, for any given initial condition one explores the solutions near the edge of the band gap.
there exists a sequence of numbis, N,, N5, ...} with ran- Finally, to compare the averaging result with the irregular
dom properties wher&l,, denotes the number of times the properties found, recall that chaos theory says that two tra-
trajectory encircles one equilibrium. This fact leads to irregu-jectories in the full equations on the average grow apart at a
lar behavior of the phase of the electric field, cf. Et), in  rate of exA{), where\ is the so-called Lyapunov exponent.
In the chaotic regio@, \ is expected to be of the order of the
eigenvalues of the origin, i.e\,~¢e. Consequently, at a dis-
— (12)ne tance of orderO(e 1) the growth factor is expr{)=0(1),
so that chaotic effects do not appear and, in agreement with
the averaging result, trajectories do not grow apart. On the
I 4 3 4 Y0 other hand, trajectories of period of ordee 2 of the aver-
A aged system have erratic phase behavior. Indeed, on such a
15 length scale the growth factor exg~exp(e 1) is much
-2 bigger than unity, and the averaged equations cannot be ex-
S/ pected to be useful. Thus one sees that the length scales at
- which chaos is observed here and where the averaged equa-
tions are valid do not overlap.

The dominant term is of ordes 2. For the period of the
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APPENDIX A: AVERAGING Since this term is linear a reasonable choice for the jump in

1. Applying the averaging method A for a transition froma to b at {=¢{,, IS

ConsiderF as used for the multilayer, A= ex;{ ”mféam %K dg}Aa, )
F(ALALD = SIOA + s(OA+ DAL+ 2A3A,. N apn ST
(A1)  WhereK denotes

Let the parameter functions be real continuous and small eziﬂf}

g K = )
with their averages, i.e§(£)=0(4), and similar for the other © [e‘z'”g 0
two parameter functions. Instead of three small parameter

. - This expression yieldB,, as will be shown now.
one single small parameteris introduced as

The exponent in this expression can be expressed in the

S 5 earlier definedp=(ny,/Nga)*’? in Eq. (13),
a=\N&E+e%+ u?, 5:§, and 5(5):@. (A2) o
o o

(™ ng(2)
. lim 2ng( )K(Z)d§= (In P)K(&ap)- (A4)
The hat parameters satis@f+&°+a°=1 and determine a A=0J gmn 2Mold

direction in the 3D sphere around zero in parameter space, Tq evaluate the linear transformation in E43) one diago-
being the radius. The “wiggle” parameter functions are orde,gjizes the exponent

1. The equation now readdA/d/=af(A;8,e, ) with A 1o
=[A,,A]", f=[-iF(A;8,2,1),iF(A;8,2,)]". Having for- K(Lap) = U{ }U‘l,
mulated the equation this way, one can apply the averaging
theorem as, e.g., in Refi6,7]. Following the proof, one sees \yhere
that the estimates can be made uniform in the hat parameters _ _
and conclude that these estimates apply in a sphere in the U= i[ gmab  gmab } (A5)
original parameter space. 2

This result makes clear that transformations that differ
from those in Eqs(3) and (4) in first order do not improve Then using the general equality —ekMU™)
the approximation within the accuracy given by averaging=U(expM)U™  one finds  straightforwardly  that
result (although in practice it may yield a better resuin  exp{In p K({p} equals

obvious example is wheky(¢) in Egs.(3) and(4) is replaced 1 = (b p by
by its averaged valuds. Then one finds for the coupled _{ pTp p=p } (A6)
mode variables a vector field as in E), but with param- 2| (p-pHe @ (p+p)

eter functions that differ from the ones given here. One ca
verify that the averaged values of these coefficients are equa
to those given in Eq(7), so that the averaged equations are ~ Comparison of the averaged and the exact transfer maps

the same. Note, however, tha_t the \{ar|ab¢gsd_|ﬁer, how- An approximate expression for the map of the averaged
ever, in first order, so that no inconsistency with the averag-

ing result arises. equationqA_/dgz af 4, (A; Aﬁ,é,{l) is obtained as fol_lows. This
map satisfiesA(1)=A(0) + af; fo,[A(L] d and sinceA({)
2. Averaging for the multilayer =A(0)+0O(a) for 0< <1 it holds

These proofs mentioned above are formulated for param- A1) ={Id + af, (-) + O(a?)}A(0) (A7)
eter functions that is continuous it In the case of a &
multilayer, however, there appears a discontinuity, and evewith f,,(-) denoting the nonlinear transformatioiy,(-)A
a & function in Eq.(A1). It requires a more detailed analysis =f,,(A).
to include such cases in general, which is not the purpose of Next consider the transfer mapin Eq. (10). Observe for
this paper. Instead we will show that the transfer niap) a=0 its constituents are all equal td, and we consider the
equals the transfer map of the averaged equation apart fromfiast order correction. Within one layer the coefficientsFin
term of orderalz. This implies that the difference after apply- are constants and it holds
ing the mapa ™ times reduces to ordet, as in the averaging
result. Thus the averaged version of E41) is the proper Do) =1d + o afy(-) + O(a?). (A8)

one for the multilayer. _ Here the subscrip denotes the value of the field in medium
Essential in the argument is that the map at the materiad Recall thata f,(A)=[—iF 4(A.,A ),iF(A_,A,)]. With the

boundarieg12) can be expressed in terms bfas follows.  result in Eqs(A3) and (A6) one obtains similarly
The 6 function occurs ire({) only. The corresponding term

hich expression equaB,, in Eq. (12).

. Labt\

in F reads B.,=Id + alim f f +0(c?), (A9)
n(l) 0 eZi'n'{ |:A+:| A—0 Lo\
2nple?™ 0 Al where f, denotes the linear term if that corresponds to
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e({). A similar relation holds foBy,,. Now consider the com- - Ym .,
posed mapping to find P=4PP= JO (9HIgx)™" dy]| . (B1)
A+ ap Here it will be shown for5=0 thatP can be written as
a( )+ lim J fot+
—0 + —= .
T=1d+a ! » iabg +0(a?). eP =In(y/X) + terms bounded il whenH 0.
b +A\+ ba
+=fu (1) + IimJ f, (B2)

d A—0 “Mpa

To obtain this result, observe that bog and the inte-
(A10) grand, throughx(y; H), depend orH. For H— 0 the value of
Vm(H) converges to the solution ¢f(0,y,)=0 given by

Since

3uyn =8 - o). (B3)
o A+ To simplify the integral we introduce scaled variables and
|imf f, = ”mf f(-) (A11) Hamiltonian
A—0 “N+ap A—0 “MLap
X y 16
§=y—, v H(&, 71)‘ = H(Ymé ymn)
and f, andf, do not depend o we can combine the four M M 31Ywm -

terms to

and evaluaté to find
T=1d+ a fo(-) + O(a?) (A12)

H(&n) = §2 5— 7+ (& + ). (B5)
so that comparing with Eq(A7) we obtain the required ©

result Then withaH /9£=[(3/16)Juy’) X(dH/ 3X)yy one writes Eq.
(B1) as
APPENDIX B: SINGULARITY IN THE WAVELENGTH ) e
_ o P=—— f (aRHI0O ™ dy], (B6)

Smooth closed curves in the phase portrait in Fig. 2 rep- P

resent waves with periodic trajectories with periBdthat

depends orH, as sketched. Here we derive an approximatgyhere use is made of EGB3).

expression folP as function ofH nearH=0. We consider a

trajectory just outside the homoclinic loop, and correspond- Analysis

ingly the behavior foH | 0. The proof for the inner trajecto- 3

ries runs similarly. The integral in Eq(B6) diverges forH | 0. Expecting that
An exact expression as a function of the valueHofol- the linearized part of the equatlons is responsible for this

lows from the Hamiltonian form of the equatio/d,  singularity we writeP="Pj, +Pyes, Which terms, in case that

=0H/dy, dy/d{=-0H/ox with H as in Eq.(20) and is given  's_ gre defined as. cf. EGBS)
by P(H)=4ds/|VH|, where the integral is taken over the ’ ' ’

closed loop corresponding té=H. To find an approximate 5 Vil 1

expression foP whenH is near zero, we proceed as follows. &Py = ZJ ——=dy (B7)
For the present Hamiltonian the trajectory just outside the 0 2\ 72 +H

homoclinic loop is described by a functiefy; H), such that

H(x,y)=H. This function is defined on the intervfD,y,,] and

and connects in thg-y plane the pointgx.,,0} and{0,yq}.

Herex,, andy,, are the positive solutions ¢f=H(x,,,0) and YlYm ~

H=H(0,y,,), respectively[Xmi, andymax in the text, cf. Eq. ePresi= Zf R(7,H)d7, (B8)

(22)]. This function describes 1/4 of a complete closed tra-
jectory. Then with H(x,y)=H one finds that(dH/dx) _ - [ _
X (dx/dy)+aH/dy=0, and one transforms the exact expres-Where R given by R=(dH/9€)™'=(2\77+H)™%. Evaluation

sion for P(H) given above to of Py, yields

036610-8
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B — -1 Ym Ym 2
&P =IN(HY2) +1n + +H|. (B9
Ym Ym
Clearly, the second term is bounded whén- 0. Then, for
the first term, it remains to express/2 in the ratio &,/ 7.
Solving H=H(&,,,0) one finds&=H+0O(H?) and similarly

72=1+H+0(H)? so that
Xo/Ym = HY 1 + O(H)] (B10)

showing that Eq(B2) holds forﬁsnn.

PHYSICAL REVIEW EO0, 036610(2004)

To evalﬂateIBrest evaluater at H=0. One finds, Whergo
stands for&(7,0),

71— b0 260 26077
néo[ 1+ 285+ 207]

Since.fzg(n,O) satisfiesgn,O):n[l +0(77)] one sees that
R(7%,0)=n+h.o.t. As a resultﬁ,es(ﬁ:O) is bounded, and

sinceP . depends continuously dt one concludes that Eq.
(B2) holds for P,eg; as well.

2R(%,0) = (B11)
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