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Differences are investigated between solutions of the one-dimensional Helmholtz equation for monochro-
matic waves in a Kerr grating and its approximation, the(generalized) coupled mode(GCM) equations. First
it is pointed out that use of the latter can be justified on the basis of averaging theory, and an upper bound is
given for the error made this way. Second, the qualitative difference that arises because of the nonautonomous
nature of the Helmholtz equation is investigated. The latter property causes that part of the trajectories to be
chaotic, in contrast with the periodicity of the solutions of the(autonomous) GCM equations. In particular,
standing waves near the gap soliton with(envelope) wavelength of the order of the inverse squared of the index
contrast show irregular features. This is concluded from the observed scaling behavior of the dimensions of the
chaotic region in the phase plane.
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I. INTRODUCTION

Monochromatic waves with frequency near a band gap in
a one-dimensional Kerr grating with periodd are usually
described by writing the electric field as a sum of two
counter-propagating traveling waves with slowly varying
amplitudesA+szd andA−szd, say. Approximate equations for
these amplitudes are heuristically found on the basis of thea
priori assumption that the amplitudes depend slowly onz
after substitution of the electric field into Maxwell’s equa-
tions. In this way one obtains the so-called coupled mode
equations, cf. Refs.[1,2] and references therein. In a more
sophisticated and precise procedure one writes the field as a
linear combination of, e.g., Bloch modes, and first sets up
exact equations for the amplitudes[3,4]. Subsequently one
derives withouta priori assumptions an approximate version
of the equations. This leads, cf. also Ref.[5], to so-called
generalized coupled mode(GCM) equations. The latter equa-
tions have all the same form but differ in the precise defini-
tion of the parameters and the amplitude fields. Investigation
of the difference between solutions of the exact equations
and of their approximate version is the subject of this paper.

As a first topic it is demonstrated that the GCM equations
are obtained from the exact equations by an averaging pro-
cedure[6,7]. This procedure yields an overall upper bound
for the difference in terms of the(small) parameters: detun-
ing, linear index contrast, and nonlinearity.

Second the qualitative difference between solutions of ex-
act and approximate equations is investigated for a specific
case: standing waves in a multilayer. A crucial qualitative
difference is expected for the following reason: the exact
equations depend periodically onz. Consequently, part of
their solutions show irregular, “chaotic” behavior[8,9]. In
contrast, the GCM equations, being the averaged version of
the exact equations, do not depend explicitly onz. Their
Hamiltonian stucture makes them integrable and solutions

are in general doubly periodic, with equilibria and the solu-
tions of infinite period, the gap solitons, as extremal cases(in
fact, they are known explicitly, cf. Ref.[2]). This qualitative
difference is investigated for standing waves, in particular
for those near the gap soliton.

These issues are discussed in the following way. Starting
from the Helmholtz equation an equivalent system of two
coupled first order equations for the mode amplitudesA+ and
A− of harmonic modes exps±ikBzd, kB=p /d is formulated.
This provides an exact description of the waves, within the
range of validity of the Helmholtz equation. The averaged
version of these equations yields the GCM equations and
thus error estimates can be obtained in terms of the relevant
small parameters.

Next, standing waves in a multilayer are considered in
more detail. Via phase plane analysis solutions of the exact
equations for the multilayer are compared with those of the
corresponding GCM equations. As expected, the former
show chaotic behavior. In particular one observes a region
with chaotic trajectories around the gap soliton, as the theory
of nonintegrable systems predicts. Numerically a scaling re-
sult for the dimension of this region is found in terms of the
(linear) index contrast of the multilayer. Comparison with the
corresponding GCM phase portrait shows that this region
contains waves with(envelope) wavelength longer than the
inverse squared of the index contrast. Furthermore, the
present calculations demonstrate that the GCM model gives
a very poor description for index contrast larger than the
order of 10−1.

II. EQUATIONS

A. Coupled mode equations and averaging

Consider monochromatic waves in a one-dimensional sys-
tem with third order nonlinearity. The electric field is or-
thogonal to the direction of propagationz and given by
RefEszdexpsivtdg. The nonlinear index of refraction depends
periodically on z with period d and reads, withz=z/d,*Email address: t.p.valkering@utwente.nl
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nszd=n0szd+n2szduEu2. Then Helmholtz equation reads

d2Ẽ/dz2 = − d2k0
2szdf1 + gszduẼu2gẼ, s1d

where the different symbols are given by(E0 is some real
reference field)

k0szd =
v

c
n0szd, gszd =

2n2szd
n0szd

E0
2, Ẽ =

E

E0
. s2d

In shallow gratings band gaps occur at frequencies and wave
numbers near multiples of the Bragg wave number and fre-
quency kB=p /d, vB=ckB/ n̄0, n̄0 denoting the average of
n0szd. To formulate a set of first order equations that is ap-
propriate to describe solutions with frequencies near and in
the first band gap, the electric field is written as a linear
combination of solutions exps±ipzd of the homogeneous lin-
ear part of Eq.(1),

Ẽszd =
1

Î2dk0szd
fe−ipzA+szd + eipzA−szdg, s3d

i.e., as a sum of modulated traveling waves, withA+ andA−
as amplitudes. The standard way of deriving the CM equa-
tions is to assume that these amplitudes depend slowly onz,
and neglecting small terms. Here we use a different route,
similar to the one in Refs.[3,4], leading to GCM. Relation
(3) is supplemented with a second relation,

dẼ

dz
= iÎdk0szd

2
f− e−ipzA+szd + eipzA−szdg, s4d

and we consider Eqs.(3) and (4) as a transformation from

variablesfẼszd ,dẼ/dzg to fA+,A−g. This results in a set of
first order equations forA+ andA− that is equivalent to Eq.
(1). Somewhat lengthy but straightforward calculations show
that this set has the form

dA+/dz = − iFsA+,A−;«,d,md,

dA−/dz = iFsA−,A+;«* ,d,m*d s5d

with F given by

F = dszdA+ + «szdA− + m0szdhuA+u2 + 2uA−u2jA+ + m1szdh2uA+u2

+ uA−u2jA− + m1
*szdA+

2A−
* + m2szdA−

2A+
* . s6d

F depends periodically onz through thez-dependent “pa-
rameter functions”«szd, dszd, andmnszd,

dszd = dk0szd − p, «szd =
in08szd
2n0szd

e2ipz,

mnszd =
gszd

4
ein2pz. s7d

The generalized coupled mode equations are Eqs.(5) and
(6) with the parameter functions(7) replaced by their aver-
aged values. One way to justify this replacement is to assume

that the averaged valuesd̄, «̄, m̄n are small and that the co-

efficients satisfy the order relationsdszd=Osd̄d, etc. Then,

applying the averaging method[6,7], one concludes thatthe
difference between the solutions of the full and the averaged
equations for initial condition that differ in first order in the
small parameters, remains of first order on a distance scale
of order of their inverse. In Appendix A 1 a more precise
formulation of how to obtain this result is given.

In applications, the parameter functions in Eq.(7) depend
on a fewer number of small parameters, for instance the de-
tuning sv−vBd /vB, the linear index contrast« introduced
through

n0szd = n̄0f1 + « sszdg, s8d

and the nonlinearitym via n2szd=m mszd. Heresszd andmszd
are arbitrary but fixed functions, determined by the gratings
one wants to consider. Ifsszd has zero average one readily
evaluates that the averaged values satisfy

d̄ = dsv − vBd/vB,

«̄ = «F i

2
S d

dz
ln n0szdDe2ipzG

av
+ Os«2d,

m̄n = m
E0

2

2n̄0

fmszdein2pzgav + Os«md. s9d

Thus the averages are of first order ind, «, andm. The same
holds for the functions themselves. Consequently in the av-
eraged equations one may retain only the terms that are lin-
ear ind, «, andm.

B. Equations for a multilayer

Here we consider a multilayer where each unit consists of
two layers,a and b with indices of refraction denoted by
n0a,b and n2,ab, respectively. Then the parameter functions
dszd, mnszd in Eq. (7) andsszd in Eq. (8) are step functions,
and «szd equals the sum of twod functions located at the
transition points between the layers. These properties cause
that averaging theory as it is formulated usually cannot be
applied immediately.

Maintaining the aim of the present paper,F in Eq. (6) was
simplified by takingm1=m2=0. Having in mind that«szd
=0 within each homogeneous layer, one sees that coupling
betweenA+ andA− is then realized by the nonlinear self- and
cross-phase modulation within each layer, and by the linear
coupling at the transition between the layers. This simplifi-
cation allows us to give an explicit expression for the trans-
fer map for the full system. In Appendix A 2 it is shown that
the averaged system as defined above is the proper one for
this transfer map.

The full equations are periodic inz, and a standard way to
investigate their solutions is via the transfer mapT over one
unit. For the present problem this map can be given explic-
itly. Let A denote the column vectorfA+,A−gT. Then essential
features of the trajectories are represented by the discrete
sequence, generated byT,
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An = TsAn−1d, hAn = Aszo + ndj, s10d

wherez0 is an arbitrarily chosen initial position. Letz0 be at
the beginning of a layera. ThenT is given by the composed
transformation(cf. Fig. 1)

T = Bba + Fb + Bab + Fa. s11d

HereFa,b is the flow through the layersa andb, respectively,
and the matricesBab,ba represent the transition between the
two materials, froma to b (b to a). Here note thatn0szd is
discontinuous at a boundary between two layers, so that the
transformation Eq.(3) and (4) is discontinuous as well.
Therefore the variablesA are discontinuous at the transition
point, and there is a linear relation between the values at each
side of the boundary. One writesAb=BabAa at the boundary
from a to b. This transformation is found from the continuity
of E anddE/dz. With Eqs.(3) and(4) one finds straightfor-
wardly

Bab = F b+ b−e2ipzab

b−e−2ipzab b+
G , s12d

with

b± =
1

2
sr ± r−1d, r =În0b

n0a
s13d

andzab denoting the position of the boundary.
In the nonlinear material, an explicit expression for the

flow Fa,b follows from Eqs.(5) and (6) with «szd=0 and
m1szd=m2szd=0. With the definitions

ka,b±sA+,A−d = da,b + m0a,bhuA±u2 + 2uA7u2j, s14d

Fa can be written in the form of a matrix, depending non-
linearly on its argument,

FasAd = Fe−ikasA+,A−dsa/dd 0

0 eikasA+,A−dsa/dd GFA+

A−
G s15d

and similar forFb.

To obtain the averaged equations observe that«szd con-
tains twod functions at the material boundarieszab andzba.
Thus«̄ consists of contributions of two terms. Evaluating the
first contribution yields after partial integration

lim
l→0

E
zab−l

zab+l

«szddz =
i

2
e2ipzab ln

nb

na
s16d

and similar for the second. Then, withzab=zba+a/d one
finds

«̄ = ln
na

nb
eips2zba+a/dd sinspa/dd. s17d

Clearly «̄ is complex, but always can be chosen to be real by
proper choice of the origin of thez axis. Because of the
underlying Hamiltonian structure, the equation has a con-
stant of the motion, the HamiltonianH, which is given by
(«̄ is chosen to be real andm̄ stands form̄0 which is real)

H = d̄suA+u2 + uA−u2d + «̄sA−
* A+ + A−A+

* d +
m̄

2
fuA+u4 + uA−u4

+ 4uA+u2uA−u2g. s18d

Trajectories are most easily represented in terms of the level
sets of this Hamiltonian.

III. STANDING WAVES NEAR THE GAP SOLITON IN
THE MULTILAYER

In this section the trajectories of standing wave solutions
of Eq. (5) with m1szd=m2szd=0 are compared with those of

its averaged counterpart atd̄=0, i.e.,v is at the Bragg fre-
quencyc n̄0

−1kB. Standing waves can be chosen to have real
Eszd. ConsequentlyA+=A−

* =A= uAuexpsifAd, say, and trajec-
tories are drawn in the complexA plane. The electric field
then can be written as, cf. Eq.(3),

Eszd =Î 2

dk0sz/dd
uAsz/dducosfpz/d + fAsz/ddg. s19d

A. Periodic solutions of the averaged equations

Trajectories of the averaged system are most easily repre-
sented as level curves(Fig. 2) of the averaged Hamiltonian
(18) which with A=sx+ iyd /2 reads

H =
1

2
d̄sx2 + y2d +

1

2
«̄sx2 − y2d +

3

16
m̄sx2 + y2d2. s20d

The (two) trajectories through the origin, so-called ho-
moclinic loops, represent a localized excitation, the gap soli-
ton. The smooth closed curves both inside and outside the
homoclinic loops represent periodic trajectoriesAszd with

FIG. 1. Definition of grating geometry.

FIG. 2. Level sets of the Hamiltonian at mid gap frequencyd̄
=0, m̄=1, «̄=0.1. Thick: the gap soliton.
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period depending on the value ofH, with a singularity at
H=0. For the gap soliton the maximum value of the electric
field occurs where level sets intersect the imaginary axis, i.e.,
whereHs0,yd=0. One finds with Eqs.(20) and (3)

m̄uAmax solu2 =
2

3
«̄, n̄2uEmax solu2 =

4

3
n̄0«̄. s21d

The amplitude of the periodic solutions varies between
valuesuAminu anduAmaxu, determined by the intersection of the
closed curves with the imaginary axis, for inside and outside
trajectories given by

Hs0,ymaxd = Hs0,ymind = H if H , 0,

Hs0,ymaxd = Hsxmin,0d = H if H . 0. s22d

In either caseymax approaches the value in Eq.(21) when
H→0 andxmin andymin tend to zero.

For trajectories near the gap soliton, the wavelength can
be expressed approximately in terms of these maximum and

minimum values as follows. IfP̃sHd denotes the distance that
is covered by a trajectory in the first quadrant, then the wave-

length of the inner and outer trajectory is given byPin=2P̃

andPout=4P̃, respectively. In Appendix B it is shown that

«̄P̃ = ln
uAmaxu
uAminu

+ terms bounded whenH → 0. s23d

Clearly the first term diverges whenH→0, so it is the domi-
nant one. This term is easily understood as follows: Near the
origin a trajectory is approximately a linear combination of

the two eigenmodes exps±zÎ«̄2− d̄2d of the linearized sys-

tem. Consequently whend̄=0, the amplitude grows asuAu
,uAminuexps«̄zd. Now observe that for smalluAminu and small
«̄ the trajectory remains extremely long in the neighborhood
of the origin, so that the period is dominated by the linear
growth from uAminu to uAmaxu. The actual proof of Eq.(23) is
based on this argument(cf. Appendix B). Note that this ex-
pression makes sense only ifuAminu! uAmaxu and small«̄.

B. Irregular solutions of the full equations

With the transfer map(11), a series of phase portraits, cf.
Fig. 3, was calculated for different values of the index con-
trast defined as«=sn0a−n0bd / sn0a+n0bd. The phase portraits

show, apart from a scaling factor, discrete trajectories ofÃ
=exps−ipzdA, the right going constituent of the electric field

in Eq. (3). Note thatÃn=s−dnAn. They are obtained using the
transfer map using the code accompanying Ref.[12]. For
comparison of averaged results with the exact ones note that
«̄=lnsna/nbd=2«+Os«2d.

One directly sees that for the smaller values of« the phase
portrait is similar to that of the averaged model, apart from a
rotation due to the choice ofz0 in Eq. (10). With increasing«
one sees a growing dark region around the homoclinic loop
that exists for«=0. The equilibria inside the(former) ho-
moclinic loops remain, with closed curves around them. Out-
side the loops one observes closed curves as well, they dis-

appear, however, completely for the larger values of«.

Here we focus on the dense collection of dots in the
neighborhood of the unstable manifold. These dots determine
a region whose dimensions grow with increasing«. We will
call this regionC. In each graph in Fig. 3, this region is
generated by one initial condition only, nearby the origin.
Any starting point withinC fills this region.

To investigate the way in which the dimensions ofC de-
pend on«, both D and the diameterR of the largest circle
around the origin that fits withinC were determined as func-
tions of«, cf. Figs. 4 and 5. A fit yields the following scaling
relations:

D = c1 «1/2 and R= c2 e−c3/« s24d

with constants approximatelyc1=5, c2=232,c3=1. One ob-
serves thatD2 is approximately linear in«, which agrees
with the relationship(21) that follows from the averaged
equations.R becomes small with exps−c3/«d.

The values of the constantsci depend on the specific sys-
tem one is considering, but the functional dependence of« is
expected to be universal for the type of problem considered
here. It seems remarkable thatc3 approximately equals unity.
However, in terms of scaling this cannot be relevant, since a
change of the definition of« changes the value of this con-
stant. This exponential behavior is not unexpected. For a
perturbed Hamiltonian oscillator the perturbation leads to ex-
ponential splitting of the homoclinic trajectory[10], which
splitting determines the dimensions of the stochastic layerC.
Related to this the dynamics near the separatrix and the
width of the layer can be approximately described by the
so-called whisker map, cf. Ref.[8] (for an example yielding
exponential width, cf. Ref.[11]).

C. Interpretation

The phase portraits in Fig. 3 are typical for a two-
dimensional(2D) dynamical system that can be seen as a
perturbed integrable system, as the present one. For a proper
interpretation one needs the concepts and theories that de-
scribe the changes with respect to the averaged integrable
model: KAM theory (the survival or disappearance of peri-
odic orbits whose period is irrational with respect to the lat-
tice periodd), Poincare-Birkhoff theory(the survival of ra-
tional periodic orbits), andChaos theory, the appearance of
irregular trajectories, cf. Refs.[8,9,12]. Typical trajectories in
a chaotic region show sensitivity of initial conditions, i.e.,
two trajectories that start nearby each other grow exponen-
tially apart with distance. Furthermore, the Fourier spectrum
of a trajectory is broadened compared to thed function spec-
trum of the periodic orbits in the unperturbed averaged sys-
tem.

Comparing the phase portraits in Fig. 3 with those of the
averaged system, Fig. 2, one infers that a set of periodic
trajectories around the gap soliton and with a certain range of
frequencies have lost their periodicity. To quantify this state-
ment, observe that the phase portraits in Fig. 3 suggest that
there is a largest inner closed curve and a smallest outer
curve roughly at the boundary ofC. Using the approximate
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FIG. 3. Discrete phase portraits of the transfer map for increasing linear index contrast«=sn0a−n0bd / sn0a+n0bd (top to bottom). They
demonstrate the growth of the chaotic region near the homoclinic loop(the gap soliton); n0=2, n2a=0, and the reference fieldE0

2

=2s3n2bnbd−1.
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expression for the period(23), one infers from the scaling
results(24) that the period of the outer surviving curve is
determined by

Pout , «̄ −1 lnsD2/R2d = «̄ −1hln c5 + ln«̄ + 2c3«̄ −1j. s25d

The dominant term is of order«̄ −2. For the period of the
inner orbit, one obtains a similar expression. We conclude
that the periodic orbits in the averaged model with period
larger than the order of magnitude of«̄ −2 haved turned into
irregular trajectories.

The irregularity of a typical trajectory appears as follows:
In the averaged model, the trajectories inside a homoclinic
loop circle around one of the equilibria. Correspondingly the
phase ofA oscillates aroundp /2 s−p /2d. The trajectories
outside the loops circle alternatingly around the two equilib-
ria, i.e., the phase jumps withp each period of the amplitude
uAu. In either case a trajectory forms a sequence of localized
excitations at a regular distance. In contrast a typical trajec-
tory in regionC will swap at irregular intervals between the
two regions. More specifically, for any given initial condition
there exists a sequence of numbershN1,N2,N3, . . .j with ran-
dom properties whereNn denotes the number of times the
trajectory encircles one equilibrium. This fact leads to irregu-
lar behavior of the phase of the electric field, cf. Eq.(19), in

sharp contrast to the phase behavior of the field in the aver-
aged model. This behavior depends sensitively on the initial
condition. That means that two trajectories that are very
close atz=z0 typically will finally have completely different
sequencehN1,N2,N3, . . .j.

IV. DISCUSSION

Summarizing, it was pointed out that solutions of the gen-
eralized coupled mode equations and the corresponding so-
lutions of the Helmholtz equation grow apart at no more than
the order of the small parameters(i.e., detuning, linear index
contrast«̄, and nonlinearity) on a distance proportional to
their inverse. In particular, restricting this result to the linear
index contrast, it says that trajectories in full and averaged
model, respectively, that are«̄ close atz=0, remain«̄ close
at distanceOs«̄ −1d. Complementary to this, for the present
multilayer and withv equal to the Bragg frequency, we ob-
serve that a qualitative difference appears for trajectories
with wavelength larger than the order of«̄ −2, near the gap
soliton. This difference appears primarily in irregular behav-
ior of the phase of the envelope of the electric field.

The area in the phase portrait filled by these irregular
trajectories, diminishes exponentially as a power of
exps−«̄ −1d. So it becomes extremely small for fiber gratings,
with index contrast of the order of 10−3, 10−4. In contrast, for
values of«̄ of order 1, the phase portraits of the Helmholtz
equation and GCM disagree completely, as Fig. 3 shows.
Note, however, that results are obtained for varying the index
contrast with frequency fixed at the Bragg value. Comple-
mentary, the scaling behavior should be investigated fixing
the index contrast and varying the frequency, in which case
one explores the solutions near the edge of the band gap.

Finally, to compare the averaging result with the irregular
properties found, recall that chaos theory says that two tra-
jectories in the full equations on the average grow apart at a
rate of expslzd, wherel is the so-called Lyapunov exponent.
In the chaotic regionC, l is expected to be of the order of the
eigenvalues of the origin, i.e.,l, «̄. Consequently, at a dis-
tance of orderOs«̄ −1d the growth factor is expslzd=Os1d,
so that chaotic effects do not appear and, in agreement with
the averaging result, trajectories do not grow apart. On the
other hand, trajectories of period of order*«̄ −2 of the aver-
aged system have erratic phase behavior. Indeed, on such a
length scale the growth factor explz,exps«̄ −1d is much
bigger than unity, and the averaged equations cannot be ex-
pected to be useful. Thus one sees that the length scales at
which chaos is observed here and where the averaged equa-
tions are valid do not overlap.
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FIG. 4. Definitions ofD andR.
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APPENDIX A: AVERAGING

1. Applying the averaging method

ConsiderF as used for the multilayer,

FsA+,A−,zd = dszdA+ + «szdA− + mszdhuA+u2 + 2uA−u2jA+.

sA1d

Let the parameter functions be real continuous and small

with their averages, i.e.,dszd=Osd̄d, and similar for the other
two parameter functions. Instead of three small parameters,
one single small parametera is introduced as

a = Îd̄2 + «̄2 + m̄2, d̂ =
d̄

a
, and d̃szd =

dszd
a

. sA2d

The hat parameters satisfyd̂2+ «̂2+m̂2=1 and determine a
direction in the 3D sphere around zero in parameter space,a
being the radius. The “wiggle” parameter functions are order

1. The equation now readsdA/dz=afsA; d̃ , «̃ ,m̃d with A

=fA+,A−gT, f =f−iFsA; d̃ , «̃ ,m̃d , iFsA; d̃ , «̃ ,m̃dgT. Having for-
mulated the equation this way, one can apply the averaging
theorem as, e.g., in Refs.[6,7]. Following the proof, one sees
that the estimates can be made uniform in the hat parameters
and conclude that these estimates apply in a sphere in the
original parameter space.

This result makes clear that transformations that differ
from those in Eqs.(3) and (4) in first order do not improve
the approximation within the accuracy given by averaging
result (although in practice it may yield a better result). An
obvious example is whenk0szd in Eqs.(3) and(4) is replaced
by its averaged valuekB. Then one finds for the coupled
mode variables a vector field as in Eq.(6), but with param-
eter functions that differ from the ones given here. One can
verify that the averaged values of these coefficients are equal
to those given in Eq.(7), so that the averaged equations are
the same. Note, however, that the variablesA± differ, how-
ever, in first order, so that no inconsistency with the averag-
ing result arises.

2. Averaging for the multilayer

These proofs mentioned above are formulated for param-
eter functions that is continuous inz. In the case of a
multilayer, however, there appears a discontinuity, and even
a d function in Eq.(A1). It requires a more detailed analysis
to include such cases in general, which is not the purpose of
this paper. Instead we will show that the transfer map(10)
equals the transfer map of the averaged equation apart from a
term of ordera2. This implies that the difference after apply-
ing the mapa−1 times reduces to ordera, as in the averaging
result. Thus the averaged version of Eq.(A1) is the proper
one for the multilayer.

Essential in the argument is that the map at the material
boundaries(12) can be expressed in terms ofF as follows.
The d function occurs in«szd only. The corresponding term
in F reads

n08

2n0
F 0 e2ipz

e−2ipz 0
GFA+

A−
G .

Since this term is linear a reasonable choice for the jump in
A for a transition froma to b at z=zab is

Ab = expH lim
l→0

E
zab−l

zab+l n08

2n0
K dzJAa, sA3d

whereK denotes

Kszd = F 0 e2ipz

e−2ipz 0
G .

This expression yieldsBab as will be shown now.
The exponent in this expression can be expressed in the

earlier definedr=sn0b/n0ad1/2 in Eq. (13),

lim
l→0

E
zab−l

zab+l n08szd
2n0szd

Kszddz = sln rdKszabd. sA4d

To evaluate the linear transformation in Eq.(A3) one diago-
nalizes the exponent

Kszabd = UF1 0

0 − 1
GU−1,

where

U =
1
Î2
F eipzab eipzab

e−ipzab − e−ipzab
G . sA5d

Then using the general equality expsUMU−1d
=Usexp MdU−1 one finds straightforwardly that
exphln r Kszabj equals

1

2
F r + r−1 sr − r−1de2ipzab

sr − r−1de−2ipzab sr + rd G , sA6d

which expression equalsBab in Eq. (12).

Comparison of the averaged and the exact transfer maps

An approximate expression for the map of the averaged

equationdA/dz=afavsA; d̂ , «̂ ,m̂d is obtained as follows. This
map satisfiesAs1d=As0d+ae0

1 favfAszdg dz and sinceAszd
=As0d+Osad for 0,z,1 it holds

As1d = hId + afavs·d + Osa2djAs0d sA7d

with favs·d denoting the nonlinear transformationfavs·dA
= favsAd.

Next consider the transfer mapT in Eq. (10). Observe for
a=0 its constituents are all equal toId, and we consider the
first order correction. Within one layer the coefficients inF
are constants and it holds

Fas·d = Id + a afas·d + Osa2d. sA8d

Here the subscripta denotes the value of the field in medium
a. Recall thata fasAd=f−iFasA+,A−d , iFasA−,A+dgt. With the
result in Eqs.(A3) and (A6) one obtains similarly

Bab = Id + a lim
l→0

E
zab−l

zab+l

f« + Osa2d, sA9d

where f« denotes the linear term inf that corresponds to
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«szd. A similar relation holds forBba. Now consider the com-
posed mappingT to find

T = Id + a5
a

d
fas·d + lim

l→0
E

−l+zab

+l+zab

f«+

+
b

d
fbs·d + lim

l→0
E

−l+zba

+l+zba

f«6 + Osa2d.

sA10d

Since

lim
l→0

E
−l+zab

+l+zab

f« = lim
l→0

E
−l+zab

+l+zab

fs·d sA11d

and fa and fb do not depend onz we can combine the four
terms to

T = Id + a favs·d + Osa2d sA12d

so that comparing with Eq.(A7) we obtain the required
result.

APPENDIX B: SINGULARITY IN THE WAVELENGTH

Smooth closed curves in the phase portrait in Fig. 2 rep-
resent waves with periodic trajectories with periodP that
depends onH, as sketched. Here we derive an approximate
expression forP as function ofH nearH=0. We consider a
trajectory just outside the homoclinic loop, and correspond-
ingly the behavior forH↓0. The proof for the inner trajecto-
ries runs similarly.

An exact expression as a function of the value ofH fol-
lows from the Hamiltonian form of the equationsdx/dz
=]H /]y, dy/dz=−]H /]x with H as in Eq.(20) and is given
by PsHd=rds/ i¹Hi, where the integral is taken over the
closed loop corresponding toH =H. To find an approximate
expression forP whenH is near zero, we proceed as follows.
For the present Hamiltonian the trajectory just outside the
homoclinic loop is described by a functionx̄sy;Hd, such that
Hsx̄,yd=H. This function is defined on the intervalf0,ymg
and connects in thex-y plane the pointshxm,0j and h0,ymj.
Herexm andym are the positive solutions ofH=Hsxm,0d and
H=Hs0,ymd, respectively[xmin and ymax in the text, cf. Eq.
(22)]. This function describes 1/4 of a complete closed tra-
jectory. Then with Hsx̄,yd=H one finds that s]H /]xd
3sdx̄/dyd+]H /]y=0, and one transforms the exact expres-
sion for PsHd given above to

P = 4P̃,P̃ = UE
0

ym

s] H/] xd−1 dyU . sB1d

Here it will be shown ford̄=0 that P̃ can be written as

«̄P̃ = lnsym/xmd + terms bounded inH whenH↓0.

sB2d

To obtain this result, observe that bothym and the inte-
grand, throughx̄sy;Hd, depend onH. For H→0 the value of
ymsHd converges to the solution ofHs0,yMd=0 given by

3m̄yM
2 = 8s«̄ − d̄d. sB3d

To simplify the integral we introduce scaled variables and
Hamiltonian

j =
x

yM
, h =

y

yM
, H̃sj,hd =

16

3m̄yM
4 HsyMj,yMhd

sB4d

and evaluateH̃ to find

H̃sj,hd = j2«̄ + d̄

«̄ − d̄
− h2 + sj2 + h2d2. sB5d

Then with]H̃ /]j=fs3/16dgm̄yM
4 d−1s]H /]xdyM one writes Eq.

(B1) as

P̃ =
2

«̄ − d̄
UE

0

ym/yM

s] H̃/] jd−1 dhU , sB6d

where use is made of Eq.(B3).

Analysis

The integral in Eq.(B6) diverges forH̃↓0. Expecting that
the linearized part of the equations is responsible for this

singularity we writeP̃= P̃lin + P̃rest, which terms, in case that

d̄=0, are defined as, cf. Eq.(B5),

«̄P̃lin = 2E
0

ym/yM 1

2Îh2 + H̃
dh sB7d

and

«̄P̃rest= 2E
0

ym/yM

Rsh,H̃ddh, sB8d

where R given by R=s]H̃ /]jd−1−s2Îh2+H̃d−1. Evaluation

of P̃lin yields
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«̄P̃lin = lnsH̃−1/2d + lnF ym

yM
+ÎS ym

yM
D2

+ H̃G . sB9d

Clearly, the second term is bounded whenH̃→0. Then, for

the first term, it remains to expressH̃−1/2 in the ratiojm/hm.

Solving H̃=H̃sjm,0d one findsjm
2 =H̃+OsH̃2d and similarly

hm
2 =1+H̃+OsH̃d2 so that

xm/ym = H̃1/2f1 + OsH̃dg sB10d

showing that Eq.(B2) holds for «̄P̃lin.

To evaluateP̃rest evaluateR at H̃=0. One finds, wherej̄0

stands forj̄sh ,0d,

2Rsh,0d =
h − j̄0 − 2j̄0

3 − 2j̄0h2

hj̄0f1 + 2j̄0
2 + 2h2g

. sB11d

Sincej= j̄sh ,0d satisfiesj̄sh ,0d=hf1+Osh2dg one sees that

Rsh ,0d=h+h.o.t. As a resultP̃restsH̃=0d is bounded, and

sinceP̃rest depends continuously onH̃ one concludes that Eq.

(B2) holds for P̃rest as well.
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